Harvest Maturity and Fruit Quality

Marita Cantwell
Dept. Plant Sciences, UC Davis
mcantwell@ucdavis.edu

Fruit Ripening and Ethylene Management Workshop
UC Davis, April 28-29, 2009

California orange on plane returning from Indonesia PH workshop
Nov 19, 2007

Relationship between sugar/acid ratio and sensory panelist’s response to the question about Willingness to Buy navel oranges

<table>
<thead>
<tr>
<th>Sampling week</th>
<th>% samples below sugar/acid Ratio of 8.1*</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 14-18</td>
<td>39</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>Nov 28-Dec 2</td>
<td>27</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>Dec 12-16</td>
<td>13</td>
<td>63</td>
<td>37</td>
</tr>
</tbody>
</table>

*from California A grade standard
Source: Ivans and Feree, 1987

Importance of Maturity Indices

- Sensory and Nutritional Quality
- Use—Fresh market or Processed
- Adequate shelf-life
- Facilitate marketing—standards
- Productivity

Evolution of some physical, chemical and physiological parameters during fruit development and ripening on the tree of ‘Golden Globe’ Plum.

Watada et al., 1984

Terminology

PHYSIOLOGICAL MATURITY
The stage of development when a fruit will continue development even if detached; mature fruits

HORTICULTURAL MATURITY
The stage of development when a fruit possesses the necessary characteristics for use by consumers

Group 1 Non-climacteric Fruits
Fruits that are not capable of continuing ripening process (physiological changes) once removed from the plant.

Blackberry	Loquat	Pomegranate
Cherry	Litchi	Prickly Pear
Grape	Mandarin	Rambutan
Grapefruit	Muskmelons	Raspberry
Lemon	Orange	Strawberry
Lime	Pepper (Bell)	Tamarillo
Longan	Pineapple	Watermelon

No increase in sugar content; Changes in firmness, external color, and aroma may occur

Group 1. Non-Climacteric Fruits
Conditioning
Color change may occur
Softening may occur
No increase in sugar
Decrease in acidity
Ethylene can be used to de-green

Group 2. Climacteric Fruits
Ripening
Color change
Softening often substantial
Starch to sugar conversion
Decrease in acidity
Large increase in metabolism
Ethylene used to trigger ripening

Composition of Ripe Strawberry
Harvested at different stages. Held at 70°F (21°C) to complete color change.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>% SS</th>
<th>% Acid</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% color</td>
<td>4.28</td>
<td>0.80</td>
<td>5.35</td>
</tr>
<tr>
<td>50% color</td>
<td>4.56</td>
<td>0.79</td>
<td>5.77</td>
</tr>
<tr>
<td>75% color</td>
<td>4.98</td>
<td>0.68</td>
<td>7.32</td>
</tr>
<tr>
<td>100% color</td>
<td>5.48</td>
<td>0.59</td>
<td>9.28</td>
</tr>
</tbody>
</table>
Pineapple Stored at 7°C (44°F)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>% Soluble solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>days</td>
<td>0</td>
</tr>
<tr>
<td>Shipping green</td>
<td>6.9</td>
</tr>
<tr>
<td>¼ color</td>
<td>13.6</td>
</tr>
<tr>
<td>½ color</td>
<td>13.6</td>
</tr>
<tr>
<td>Full color</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Cantaloupe Maturity/Ripeness

- Fruit begins to separate from stem
- Abscission zone; “slip”
- External color between net
- Net well developed with wax
- Subtending leaf dries up
- Internal color, firmness, soluble solids

The “slip” is a very useful attribute & applicable to old & new cantaloupe varieties.

Fresh-cut Cantaloupe melon

- Changes in Sugar Content

| Sugar loss in fresh-cut cantaloupe may be considerable, but Soluble solids do not change much; Sugar loss typically is not as extreme as in this example.

Typical loss over 10 days at 5°C (41°F):

- S.S. 0-10%
- Sugars 10-20%
Honeydew and other melons
Cut off the vine are more
difficult to harvest at a specific
stage of ripeness

Honeydew and Orange Flesh Melons
Maturity and Ripeness Classes

- **Class 0: Immature**
 - Ground color greenish-white; peel fuzzy; no aroma;
 - 10% soluble solids; flesh crisp, melon splits when cut;
 - minimum commercial harvest maturity

- **Class 1: Mature, but Unripe**
 - Ground color greenish-white; peel fuzzy; no aroma;
 - 10% soluble solids; flesh crisp, melon splits when cut;
 - minimum commercial harvest maturity

- **Class 2: Mature, Ripening**
 - Ground color white; begins to develop surface wax;
 - pulp crisp, melon splits

Minimum for Good Eating

Group 2 Climacteric Fruits ‡ has significant amount of starch
Fruits that can be harvested and ripened off the plant.

<table>
<thead>
<tr>
<th>Apple ‡</th>
<th>Mango ‡</th>
<th>Pepper (chili)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apricot</td>
<td>Mangosteen</td>
<td>Persimmon ‡</td>
</tr>
<tr>
<td>Avocado</td>
<td>Nectarine</td>
<td>Plum</td>
</tr>
<tr>
<td>Banana ‡</td>
<td>Papaya</td>
<td>Quince ‡</td>
</tr>
<tr>
<td>Cherimoya ‡</td>
<td>Passion fruit</td>
<td>Sapodilla ‡ (chico)</td>
</tr>
<tr>
<td>Guava ‡</td>
<td>Peach</td>
<td>Sapotes ‡</td>
</tr>
<tr>
<td>Kiwifruit ‡</td>
<td>Pear</td>
<td>Tomato</td>
</tr>
</tbody>
</table>

*Except for avocado, banana, mango and pear, these fruits attain best flavor if ripened on the plant. Many of these fruits have large increases in sugar during ripening.

Indicators of Harvest Maturity

APPLES

- Days from full bloom
- Time/temp (heat units) from anthesis
- Days from harvest to onset of ethylene production
- Ground color
- Soluble solids content (SSC)
- Flesh firmness and SSC
 - Starch disappearance pattern
 - Internal ethylene concentration
 - Changes in firmness or starch content
 - Streif index (Firmness/SS*Starch score)
Apple Maturity: starch index

Apply the iodine solution** to the cut surface
Drain away any excess, and rate the fruit after 2 min.
Starch-iodine reaction is temperature-dependent
Starch pattern is variety-specific.

Rating system is a scale of 1 to 6, as follows:
1 = full starch (all blue-black)
2 = clear of stain in seed cavity and halfway to vascular area
3 = clear through the area including vascular bundles
4 = half of flesh clear
5 = starch just under skin
6 = free of starch (no stain)

** Preparation of Iodine-Potassium Iodide (I₂KI) Solution for Starch Staining: Dissolve 58.1 g of potassium iodide (KI) in about 150 ml of distilled water, then add 14.5 g iodine (I₂) and mix well until completely dissolved. Then complete the final volume to 2 liters with distilled water. Store in a brown bottle or aluminum foil covered bottle.

Golden Delicious at Retail Market: How is the maturity in this box?

Maturity and ripeness stages of Manila mango

Mango Maturity Indices
- Fullness of shoulders
- External color dark to lighter green
- Internal color-white to yellow
- Lenticles and hairs on pit
- Starch content-specific gravity

Group 2* Climacteric Fruits ▼ has significant amount of starch

Fruits that can be harvested and ripened off the plant:
- Apple ▼
- Mango ▼
- Pepper (chili)
- Apricot
- Mangosteen
- Persimmon ▼
- Avocado
- Nectarine
- Plum
- Banana ▼
- Papaya
- Quince ▼
- Cherimoya ▼
- Passion fruit
- Sapodilla ▼ (chico)
- Guava ▼
- Peach
- Sapotes ▼
- Kiwifruit ▼
- Pear ▼
- Tomato

*Except for avocado, banana, mango and pear, these fruits attain best flavor if ripened on the plant. Many of these fruits have large increases in sugar during ripening.

Maturity & Ripening Stages

GREEN The tomato surface is completely green. The shade of green may vary from light to dark.

BREAKERS There is a definite break of color from green to blushed fruit. Tannish-yellow, pink or red or 10% or less of the tomato surface.

TURNING Tannish-yellow, pink or red color shows on over 10% but not more than 30% of the tomato surface.

PINK Pink or red color shows on over 30% but not more than 90% of the tomato surface.

LIGHT RED Pinkish-red or red color shows on over 60% but red color covers not more than 90% of the tomato surface.

RED Red means that more than 90% of the tomato surface, in aggregate, is red.

May 10, 2008
From YK Chan
MAFC, MY
Checker boarding
Should never be a problem with vine ripe tomatoes!

Composition of Ripe Grape Tomato Harvested at 3 Stages of Maturity

<table>
<thead>
<tr>
<th>Initial Maturity Stage</th>
<th>Weight fruit, g</th>
<th>Red color, hue</th>
<th>Firmness, N force</th>
<th>Soluble solids, %</th>
<th>Sugars mg/mL</th>
<th>Titratable acidity, %</th>
<th>Vitamin C mg/100mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.9</td>
<td>38.8</td>
<td>11.5</td>
<td>5.9</td>
<td>27</td>
<td>0.59</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>5.7</td>
<td>38.3</td>
<td>13.6</td>
<td>6.7</td>
<td>30</td>
<td>0.68</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>5.9</td>
<td>37.7</td>
<td>13.7</td>
<td>7.5</td>
<td>33</td>
<td>0.67</td>
<td>99</td>
</tr>
<tr>
<td>LSD.05</td>
<td>0.6</td>
<td>ns</td>
<td>1.5</td>
<td>0.8</td>
<td>3</td>
<td>0.09</td>
<td>ns</td>
</tr>
</tbody>
</table>

Minimum harvest stage should be Stage 4 (pink-orange)

Average 7 cvs. Cantwell, 2003

Maturity and Fruit Quality
- Know the consequences of harvesting at different stages of maturity/ripeness on final eating quality.
- Make sure workers involved in harvest, selection are well trained to ID correct maturity/ripeness.

On behalf of all consumers, please, please! As a consumer, take back poor eating fruit!
Harvest Maturity for Fruits: A balancing Act

Too often we err on the side of shelf-life at the expense of good eating quality.