What is Flavor?

Florence Zakharov
Plant Sciences, UC Davis
fnegre@ucdavis.edu

Perception of Quality

• Our sensory systems are responsible for generating an internal representation of the outside world, including its chemical (taste and olfaction) and physical (mechanical, sound, vision and temperature) features.
• When evaluating the quality of the foods we eat, we use the complete array of our sensory system (chemical and physical senses) and integrate this information to formulate a judgment.
• From an evolution standpoint, chemical senses are the most primal of the senses.

Sensory Attributes of Foods

- Appearance
- Taste
- Odor/smell/aroma
- Irritation/pain
- Texture/mouthfeel
- Temperature

Flavor

Quality Class of compound Examples

<table>
<thead>
<tr>
<th>Quality</th>
<th>Class of compound</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet</td>
<td>Sugars</td>
<td>Sucrose, fructose, glucose</td>
</tr>
<tr>
<td></td>
<td>Some proteins</td>
<td>Monellin, thaumatin</td>
</tr>
<tr>
<td>Sour</td>
<td>Acids</td>
<td>Citric acid, malic acid, tartaric acid</td>
</tr>
<tr>
<td>Bitter</td>
<td>Alkaloids, Phenolics, Terpenoids, some proteins</td>
<td>Naringin, escorbuticins, limonoids</td>
</tr>
<tr>
<td>Salty</td>
<td>Ions</td>
<td>Sodium, calcium</td>
</tr>
<tr>
<td>Umami</td>
<td>Amino acids</td>
<td>Glutamate, aspartate</td>
</tr>
</tbody>
</table>
A rapid method for measuring sugar content in a liquid

- A refractometer measures the refraction of light as it passes through a drop of liquid.
- The refractive index is directly proportional to the concentration of diluted solutes in the liquid.
- The "Brix" scale is based solely on a dilution series of sucrose in water.
- The correct term for fruit juice is:

\[
\text{TSS or SSC} = \text{sugars, organic acids, soluble pectins, anthocyanins, phenolic compounds...}
\]

Rapid methods for measuring acidity

- pH
- Titratable acidity

Sensory Attributes of Foods

“The Tongue Map”

Taste Receptor Cells on tongue

Taste Receptor Mechanisms

- **Sweet**
- **Bitter**
- **Umami**

- **Ligand receptors**: taste molecules (sweet, bitter, or umami) bind to receptors. This activates a cascade of responses inside Taste Receptor Cells, and sends information to the brain.

- **Salty**
- **Sour**

- **Ion channels**: ions (Na⁺ or H⁺) directly enter cells through channels in the membrane. This activates a cascade of responses inside Taste Receptor Cells, and relays information to the brain.
People have different levels of taste sensitivities...

Sensory Attributes of Foods

Chemical irritation
- Common chemical sense
- Stimulated by chemical irritants
 - Ex: capsaicin, piperin, allicin, glucosinolates, etc...

Innate dislikes (protection)

Sensory Attributes of Foods

Aroma
Aroma (or smell or odor) is the sensation perceived when volatile compounds are drawn into the nose.

We have learned likes and dislikes for it.

What is a volatile compound?
- A "volatile" is a small lipophilic molecule which has a high tendency to evaporate.
- Volatiles are naturally produced by plants (from almost all plant organs) and animals. They can also be made artificially (by chemical reactions designed for their production).

What does a volatile compound smell like?
- Each single volatile compound has a distinct smell.

- **β-ionone**
 - Floral, woody, sweet, fruity, berry, green

- **Dimethyl disulfide**
 - Sulfurous, vegetable, cabbage, onion

- **Myrcene**
 - Peppery, spicy, plastic
Olfactory Sensory Neurons (OSNs) in Nasal Cavity

- We have millions of odor receptors in the nose.
- In humans, odor receptors (ORs) are coded by a gene family which comprises about 1,000 genes (~350 functional genes). This gene family represents about 1% of all our genes, making it the largest gene family in the human genome.

Can we predict what a volatile will smell like?...

- The olfactory character of a volatile compound depends on:
 - the spatial arrangement (shape) of the molecule
 - the chemical (electronic and hydrophobic) properties of the molecule
 - the chirality of the molecule
 - the chemical interactions (hydrogen-bonding, electrostatic and dipole-dipole) that a volatile can have with other volatiles

Complexity of fruit aromas

- A natural aroma, smell or odor is typically made up of tens or sometimes hundreds of different volatile compounds, each of them present at different concentrations.
- Each volatile compound is characterized by a specific odor threshold (minimum concentration of a substance at which a majority of test subjects can detect and identify its characteristic odor).
- A mixture of volatile compounds is not perceived as "the sum of its parts": volatiles interact to create a unique, distinct aroma.

Sensory Attributes and Fruit Composition

- All fruit components (sugars, acids, volatiles, etc...) combine to generate a unique sensory experience for the consumer.
- Physical methods can give accurate measurements of fruit composition but it is difficult to relate these measurements to fruit quality without information about sensory perception.
Fruit Biology

- Fruit quality is closely linked to fruit composition
- Fruit composition is strongly affected by internal (genetic) and external (environment, handling...) factors
- If we define and understand the effect of these factors, we can control fruit flavor quality throughout production and postharvest handling

In climacteric fruits, the plant hormone ethylene serves as a signal for the fruit to begin ripening.

Ethylene controls softening. It also controls aroma development.

Questions?