Fruit Ripening and Quality Relationships

Stages of Fruit Development

Development
- The series of processes from the initiation of growth to death of a plant or plant part.

Growth
- The irreversible increase in physical attributes (characteristics) of a developing plant or plant part.

Maturation
- The stage of development leading to the attainment of physiological or horticultural maturity

Physiological maturity
- The stage when a plant or plant part will continue developing even if detached

Horticultural maturity
- The stage of development when a plant or plant part possesses the prerequisites for utilization by consumers

Ripening
- The set of processes that occur from the later stages of growth and development through the early stages of senescence and that results in characteristic aesthetic and/or eating quality, as evidenced by changes in composition, color, texture, or other sensory attributes.
Stages of Fruit Development

Senescence
- The last stage of development during which degradation of biological components occur.

Physiological Changes Accompanying Senescence of Horticultural Crops
Cellular:
- Loss of chlorophyll, disassembly of chloroplast structure
- Degradation of cell walls
- Altered membrane composition, loss of fluidity
- Loss of cellular compartmentation, release of vacuolar contents

Composition:
- Altered sugar content, and switch to alternative substrates for respiration
- Net loss of RNA
- Increased protease activity, net loss of protein
- Altered amino acid content

Physical Changes Accompanying Senescence of Horticultural Crops
Color:
- Loss of green color
- Synthesis of new pigments (carotenoids, flavanoids)

Texture:
- Softening
- Wilting
- Drying

Loss of resistance to pathogens:
- Development of infections
- Lesions

Respiration and ethylene production rates of climacteric and non-climacteric fruits

Compositional Changes During Pineapple Development
Maturity and Ripening

Group 1: Fruits that are *not* capable of continuing their ripening process once removed from the plant.

- Blackberry
- Loquat
- Pomegranate
- Cherry
- Lychee
- Prickly pear
- Grape
- Mandarin
- Rambutan
- Grapefruit
- Muskmelons
- Raspberry
- Lemon
- Orange
- Strawberry
- Lime
- Pepper (bell)
- Tamarillo
- Longan
- Pineapple
- Watermelon

Strawberries must be picked fully-ripe because they do not continue to ripen after harvest.

California Minimum Maturity Indices for Selected Non-Climacteric Fruits

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Minimum maturity indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomegranate</td>
<td>Red juice color and below 1.85% acid in juice</td>
</tr>
<tr>
<td>Grape</td>
<td>14 to 17.5% SS (depending on cultivar and production area) or a SS/A ratio of 20 or higher</td>
</tr>
<tr>
<td>Strawberry</td>
<td>>3/4 of fruit surface showing a pink or red color</td>
</tr>
</tbody>
</table>

SS=soluble solids, A=acidity

Group 2: Fruits that *can be* harvested and ripened off the plant

- Apple
- Mango
- Persimmon
- Apricot
- Nectarine
- Plum
- Avocado
- Papaya
- Quince
- Banana
- Passion fruit
- Sapodilla
- Cherimoya
- Peach
- Sapote
- Guava
- Pear
- Tomato
- Kiwifruit
- Pepper (chili)

Maturity and Ripening Stages of Apricots

<table>
<thead>
<tr>
<th>Stage</th>
<th>Maturity and Ripeness Stages of Apricots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100% green, firm, immature fruit</td>
</tr>
<tr>
<td>2</td>
<td>90% green with some yellow</td>
</tr>
<tr>
<td>3</td>
<td>80% green with dark yellow</td>
</tr>
<tr>
<td>4</td>
<td>70% green with dark yellow</td>
</tr>
</tbody>
</table>

California Minimum Maturity Indices for Pome Fruits

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Minimum maturity indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Starch pattern, above 10.5 to 12.5% SS and below 18 to 23 lb-force firmness (depending on cultivar)</td>
</tr>
<tr>
<td>Pear (Bartlett)</td>
<td>Yellowish-green color, and/or below 23 lb-force firmness, and/or above 13% SS (depending on cultivar)</td>
</tr>
<tr>
<td>Persimmon</td>
<td>Yellowish-green to orange color</td>
</tr>
</tbody>
</table>

SS=soluble solids
Quality Attributes of Fruits

- Vary depending on protagonist in PH chain
- Consumer-centric “quality” ultimately drives marketability and sales
- Overall consumer acceptance strongly correlated with “Flavor acceptance”

Perception of Quality

- Our sensory systems are responsible for generating an internal representation of the outside world, including its chemical (taste and olfaction) and physical (mechanical, sound, vision, and temperature) features.
- When evaluating the quality of the foods we eat, we use the complete array of our sensory system (chemical and physical senses) and integrate this information to formulate a judgment.
- From an evolution standpoint, chemical senses are the most primal of the senses.

Sensory Attributes of Foods

- Appearance
- Taste
- Odor/smell/aroma
- Irritation/pain
- Texture/mouthfeel
- Temperature

Sensory Attributes of Foods

- Our sense of taste is in charge of evaluating the nutritious content of food and preventing the ingestion of toxic substances.
- Taste is a sensation perceived in the mouth, more specifically on the tongue. We have innate likes and dislikes for it.

- Sweet
- Salty
- Bitter
- Sour (acidic)
- Umami (protein – savory)

Sensory Attributes of Foods

<table>
<thead>
<tr>
<th>Maturity stage at harvested</th>
<th>Total phenolics (mg/100g)</th>
<th>Total protein (mg/100g)</th>
<th>Total carbohydrates (mg/100g)</th>
<th>Soluble solids (%)</th>
<th>Total sugar (%)</th>
<th>Total acidity (%)</th>
<th>pH</th>
<th>TRA/TAA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive</td>
<td>27.7a</td>
<td>9.8a</td>
<td>1.7a</td>
<td>10.8a</td>
<td>9.4a</td>
<td>0.6a</td>
<td>17.7a</td>
<td></td>
</tr>
<tr>
<td>Optimum maturity</td>
<td>51.1a</td>
<td>11.7a</td>
<td>2.9a</td>
<td>13.2a</td>
<td>10.1a</td>
<td>0.9a</td>
<td>21.4a</td>
<td></td>
</tr>
<tr>
<td>Chilling</td>
<td>32.2a</td>
<td>13.7a</td>
<td>2.4a</td>
<td>12.5a</td>
<td>10.3a</td>
<td>0.9a</td>
<td>24.8a</td>
<td></td>
</tr>
</tbody>
</table>
Sensory Attributes of Foods

Aroma
Aroma (or smell or odor) is the sensation perceived when volatile compounds are drawn into the nose.

We have learned likes and dislikes for it.

The Aroma of a Strawberry
Over 200 volatile compounds!!

Sensory Attributes of Foods

Chemical irritation
- Common chemical sense
- Stimulated by chemical irritants
 - Ex: capsaicin, piperin, alllicin, glucosinolates, etc...

Innate dislikes (protection)

Sensory Attributes of Foods

Texture and Mouthfeel
- Astringency (tannins, calcium oxalate)
- Sense of touch (mechanoreceptors)

Fruit Composition and Taste

<table>
<thead>
<tr>
<th>Quality</th>
<th>Class of compound</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet</td>
<td>Sugars</td>
<td>Sucrose, fructose, glucose</td>
</tr>
<tr>
<td></td>
<td>Some proteins</td>
<td>Monellin, thaumatin</td>
</tr>
<tr>
<td>Sour</td>
<td>Acids</td>
<td>Citric acid, malic acid, tartaric acid</td>
</tr>
<tr>
<td>Bitter</td>
<td>Alkaloids, Phenolics, Terpenoids, some proteins</td>
<td>Naringin, cucurbitacins, limonoids</td>
</tr>
<tr>
<td>Salty</td>
<td>Ions</td>
<td>Sodium, calcium</td>
</tr>
<tr>
<td>Umami</td>
<td>Amino acids</td>
<td>Glutamate, aspartate</td>
</tr>
</tbody>
</table>

A rapid method for measuring sugar content in a liquid

- A refractometer measures the refraction of light as it passes through a drop of liquid.
- The refractive index is directly proportional to the concentration of diluted solutes in the liquid.
- The “Brix” scale is based solely on a dilution series of sucrose in water.
- The correct term for fruit juice is:
 TOTAL Soluble Solids (TSS or SSC) = sugars, organic acids, soluble pectins, anthocyanins, phenolic compounds...
Flavor vs. Sugar/Acid Ratio

<table>
<thead>
<tr>
<th>Acids</th>
<th>Sugars</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Insipid,</td>
<td>Sweet</td>
<td></td>
</tr>
<tr>
<td>Moderate to High</td>
<td>Sour, tart</td>
<td>Best flavor combination</td>
<td></td>
</tr>
</tbody>
</table>

Sensory Attributes and Fruit Composition

- All fruit components (sugars, acids, volatiles, etc...) **combine** to generate a **unique sensory experience** for the consumer.

- Physical methods can give accurate measurements of **fruit composition** but it is difficult to relate these measurements to **fruit quality** without information about **sensory perception**.

Sensory Methodology

- **Analytical tests**
 - Difference? What is it? How strong is it?
 - Descriptive analysis
 - Trained judges

- **Consumer tests**
 - Preference, liking, purchase intent
 - Attitudes, beliefs
 - Ethnography
 - Untrained consumers

Objective measurements and Quality prediction

- Developmental program
- Physiological processes (metabolism)
- Changes in composition
- Genetic/environmental/cultivation factors

- Harvesting at maximum potential

- Altered physiological processes (metabolism)
- Changes in composition
- Genetic/environmental/handling factors

- Attaining and retaining maximum quality
Sensors for Nondestructive Testing of Produce Quality

- Acoustic impulse transmission
- Aroma sensing technology ("electronic noses")
- Chlorophyll fluorescence
- Electrical and mechanical impedance
- Fruit bounce firmness measurement
- Near infrared (NIR) transmittance
- Nuclear magnetic resonance (NMR) imaging
- X-ray imaging

Volatiles as Sensory Markers for Quality

- Testing a rapid method for volatile analysis for use in commercial setting to monitor flavor quality (pre- and post-harvest)
 - zNose
 - HS-SBSE GC-MS

Nondestructive Quality Sensing Needs

- Degree of freshness (time since harvest)
- Prior exposure to ethylene
 (Concentration x duration x temperature)
- Prior exposure of chilling-sensitive commodities to chilling conditions (temperature x duration)
- Internal translucency
- Internal browning
- Mealiness (lack of juiciness)

Questions?