Use of Anti-browning Agents and Calcium

Diane M. Barrett, PhD
Fruit & Vegetable Products Specialist
Dept. of Food Science & Technology
University of California – Davis
(530) 752-4800
dmbarrett@ucdavis.edu
http://fruitandvegetable.ucdavis.edu

Outline of Presentation
- Causes & Types of Browning
- Location of Browning Agents in Plant Cells
- Enzymes – Polyphenol Oxidase and Phenylalanine Ammonia Lyase
- Varietal & Tissue Differences in Browning
- Prevention of Browning
- Texture and Loss of Cellular Integrity
- Prevention of Loss of Integrity

Causes & Types of Browning

Causes of Browning
- Wounding / Mechanical damage / Cutting
- Senescence and Cell / Tissue breakdown
- Temperature abuse
- Chilling injury
- Disease
- CO₂ injury
 (see apples)

Types of Browning
- **Enzymatic** (most important in fresh-cut)
 - Polyphenol oxidase
 - Phenylalanine ammonia lyase
- **Non-Enzymatic** (not important in fresh-cut)
 - Maillard - sugar-amine reaction, concentrated solutions
 - Carmelization - sugars, high temperatures
 - Ascorbic acid oxidation
 - Lipid browning

Slide courtesy of Dr. Panita Ngamchuachit
Location of Browning Agents in Plant Cells

Polyphenol oxidase (PPO)
- Because enzyme & substrate are physically separated, browning doesn’t occur until -
 - Cutting, bruising, senescence
 - In presence of oxygen

Plant Tissues/Cells
Location of Browning Components
- Water vs. Lipid Soluble Components
 - Water Soluble (70-90% of plant tissue)
 - Most of Cell Contents
 - Vacuole, Cytoplasm, Cell Wall
 - Phenolic substrates in vacuole
 - Lipid Soluble (10-30% of plant tissue)
 - Membranes (plasma, tonoplast and surrounding all organelles)
 - Plastids and Lipid Bodies
 - Polyphenol oxidase in chloroplast

Enzymes
- Proteins – that catalyze reactions by lowering activation energy
- Found naturally in plants, animals and microorganisms
- Responsible for metabolic processes, many reactions which result in quality loss
- Sensitive to temperature, pH, oxygen, light and substrate concentration
Enzymes

Polyphenol Oxidase
- Catalyzes oxidation of mono-phenolics to di-phenolics which form brown compounds
- Requires oxygen for reaction
- In plants, active pH range 6 to 7
- Contains copper as prosthetic group
- Somewhat unstable to heat
- Enzyme localized in plastids, while substrates (phenolics) are in vacuole

Phenylalanine Ammonia Lyase
- Key enzyme in phenolic biosynthesis
- Mechanical injury (wounding) and ethylene can stimulate phenolic metabolism
- Phenolics are substrates for PPO; increased concentration stimulates browning

Factors Affecting Enzyme Activity
- Variety or Cultivar
- Maturity
- Tissue (fruit, flower, tuber, stem etc.)
- Phenolics (substrates) present
- pH, oxygen, temperature, light
- Mechanical damage

Varietal & Tissue Differences in Browning
Clingstone Peach Varieties
Initial color after cutting and color after 24 hours at RT

Enzymatic Browning in Varieties of Cut Apples
Photo courtesy of Adel Kader.

Apricot cultivars - Lightness differences
(oxidized - unoxidized) After Radler, 1997

Relative PPO activity
Different tissues in apple cultivars

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Relative PPO activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peel</td>
</tr>
<tr>
<td>Red Delicious</td>
<td>100</td>
</tr>
<tr>
<td>Golden Delicious</td>
<td>33</td>
</tr>
<tr>
<td>McIntosh</td>
<td>46</td>
</tr>
<tr>
<td>Fuji</td>
<td>57</td>
</tr>
<tr>
<td>Gala</td>
<td>30</td>
</tr>
<tr>
<td>Granny Smith</td>
<td>43</td>
</tr>
<tr>
<td>Jonagold</td>
<td>43</td>
</tr>
<tr>
<td>Elstar</td>
<td>10</td>
</tr>
</tbody>
</table>

DL = Difference in lightness from cutting to later time period. Higher number indicates more browning in same time.

Prevention of Browning

Chemical Anti-browning Agents
1. Acidulants
2. Reducing Agents (most used on fresh-cut)
3. Chelating Agents
4. Complexing Agents
5. Enzyme Inhibitors
Acidulants

- **pH optimum** for PPO is 6.0-6.5
- Little activity is detected below pH 4.5 (Whitaker 1994)
- Irreversible inactivation may occur at pH < 3.0
- Usually used in common with other agents

Common acidulants:
- citric acid
- malic acid

Citric acid

Inhibits PPO by reducing pH and chelating copper prosthetic group.
- Also inhibits oxidation by chelating other metal ions
- Synergistic with ascorbic acid
- Very commonly used on fresh-cut

Reducing Agents

- Cause reduction of colorless o-quinones resulting from PPO action back to o-diphenols
- Reducing agent is irreversibly oxidized; therefore consumed

Common reducing agents:
- ascorbic acid or calcium ascorbate
- Thiols: cysteine or glutathione
Ascorbic acid
Reduces quinones to phenolic compounds
- acid and salt forms used
- salt (neutral pH) form may be more active
- water soluble
- often used in combination with citric acid

Erythorbic Acid
Reduces quinones to phenolic compounds
- Isomer of ascorbic acid
- Acid and sodium salt used
- Sodium salt may be more effective
- Cheaper (1/5 cost) than ascorbic acid

PPO in Treated Fresh-cut Eggplant
PPO activity inhibited in 0.4% solutions of either calcium citrate or ascorbate. Barbagallo et al., 2012 PB&T

Fresh-Cut Artichokes + Cysteine
Addition of 0.5% cysteine resulted in less browning. Amodio et al., 2011 PB&T

Cut Apples + Citric & Ascorbic
0.5% citric + 0.5% ascorbic – least browning

Chelating Agents
- Agents complex copper in the active site of PPO, therefore inhibit the enzyme
- Common chelating agents*:
 - EDTA – chelates many metals
 - Sporix – polyphosphate that chelates Fe, Ca, Mg, Al
- *All GRAS
Complexing Agents

- Agents capable of entrapping or forming complexes with PPO substrates or reaction products
- Results vary with specific cyclodextrin and more complex mixtures of phenolics
- **Common complexing agents:**
 - Cyclodextrins – sugar molecules in a ring formation
 - cyclic non-reducing oligosaccharides

Enzyme Inhibitors

- Sulfites inhibit PPO, but banned on use in fresh fruits and vegetables.
- One of inhibitors with the most potential is 4-hexyl resorcinol
- FDA GRAS and EU approval status for crustaceans and shrimp only
 - Additional approval requires testing on commodity of interest
 - Used in combination with ascorbic acid

Sulfites

- Inhibit polyphenol oxidase
- React with PPO intermediates to form colorless products
- No longer GRAS for fruits & vegetables served raw, sold raw or presented to customer as raw
- Foods containing detectable level of sulfiting agent (10 ppm) must label contents

4-Hexylresorcinol

- Inhibits polyphenol oxidase
- Approved for use on shrimp to control browning
- Not approved for fresh-cut

Substrate Analogs

- These agents inhibit PPO by mimicking phenolic substrates
- Over prolonged storage (>24 hr), Sapers et al. (1998) found severe browning developed.
- Suggested that cinnamates and benzoates undergo slow but gradual conversion to PPO substrates

Cinnamic Acid & Benzoic Acid

- Inhibit o-diphenol oxidase by acting as substrate analogues
- GRAS - approved for food use
Methyl jasmonate

Inhibits browning

- natural plant product
- very slightly soluble in water (soluble in alcohol)
- can be applied as gas

Physical methods - Browning prevention

1. Exclusion of oxygen
 - CA, MAP, edible coatings, sugar, salt
2. Temperature reduction
3. pH adjustment
4. Heat shock and refrigeration

Apple Slices – Antibrowning Agents and Whey Protein Concentrate

Using combination of chemical anti-browning agent with WPC (physical) is best.

Perez-Gago et al., 2006 PB&T

Texture and Loss of Cellular Integrity

Loss of Integrity - Translucency

Photo courtesy of Adel Kader.

Loss of Integrity - Dessication

Photo courtesy of Adel Kader.
General Plant Cell Structure

- Cell wall (contains pectin)
- Middle lamella (pectin)
- Plasma membrane

Cell wall strengthening with Calcium

- Calcium interaction binds free carboxyl groups on adjacent pectin chains
- “Egg-box” formation – firmer texture

- Polygalacturonic acid chains (pectins)
- Calcium ions

Factors Affecting Textural Integrity

- Genetic/varietal background
- Maturity
- Morphology, cell wall and middle lamella structure
- Cell turgor pressure
- Water content
- Biochemical factors, enzyme activity (pectin methylesterase, polygalacturonase)

Use of Calcium in Fresh-cut

- Concentrations typically used ~ 0.5-2.5%
- Either CaCl₂, calcium lactate or calcium ascorbate may be used (ascorbate will also assist with prevention of browning)
- Must be labeled
- May be used in combination with low temperature blanching for PME activation, more demethylation of pectins and additional firming

Turgor Pressure is a Function of the Osmotic Pressure in the Tissue
Calcium Dips on Fresh-cut Mangoes

To determine the effects of calcium treatments on instrumental quality and consumer acceptance

Varieties
- 'Kent', 'Tommy Atkins'

Calcium sources
- CaCl₂, Ca-lactate

Concentrations
- 0, 0.068, 0.136, or 0.204M

Dip times
- 0, 1, 2.5, or 5min

In both varieties
- ↑Ca Conc. + ↑dip time = ↑firmness
- Ca treated samples are firmer than the water dips, and the untreated controls
- Firmness retention was higher in cubes treated with CaCl₂

Consumer test

Consumer liking strongly corresponded to mango variety

Cluster 1
- n = 130
- 'Kent'
- lower Ca conc.
- CaCl₂ (at 0.136 M)

Cluster 2
- n = 53
- 'Tommy Atkins'
- (for all treatments except 0.204M)

Calcium studies- Conclusions

- **CaCl₂**: suitable for fresh-cut processing based on
 - better tissue firming
 - consumer preference
- **Optimal calcium treatment**
 - 'Tommy Atkins' 2.5 min dip in 0.136 M CaCl₂
 - 'Kent' 1.0 min dip in 0.136 M CaCl₂
- **'Kent'**: suitable for fresh-cut processing in terms of
 - consumer preference

Fresh-Cut Eggplant - Firmness

Optimal firmness with 0.4% calcium ascorbate dips (also beat anti-browning).
Barbagallo et al. 2012. PB&T

Fresh-cut Melon Firmness with Calcium

Optimal firmness with 2.5% calcium lactate at either 25 or 60°C.
Dipping berries in chitosan with or without calcium gluconate reduces texture loss.
Hernandez-Munoz et al. 2006 PB&T