The ultimate solution to the loss of trees due to fire blight infection in the rootstock is to use resistant rootstocks coupled with resistant scion cultivars. It is hoped that some of the stocks coupled with resistant scion cultivars. It is hoped that some of the desirable horticultural characteristics, as well as resistance so that this problem can be avoided in the future.

Literature cited

Ferree, D.C., M.A. Ellis, and F.R. Hall. 1983. Tree loss due to fire blight infection of rootstocks and interstems in Ohio apple orchards. Compact Fruit Tree 16:116–120.

Carlos H. Crisosto,1 Lluís Palou,2 David Garner,3 and Donald A. Armson4

ADDITIONAL INDEX WORDS. Vitis vinifera, export markets, gray mold, Botrytis cinerea, sulfur dioxide, total utilization SO2 fumigation

SUMMARY. Reduced doses of sulfur dioxide (SO2) were evaluated for the fumigation of marine containers with respect to the concentration x time (CT) product and gas penetration. Two commercial export containers were loaded at 32 °F (0 °C) with 20 metric pallets [40 × 48 inches (102.5 × 123.1 cm)] comprised of 72 expanded polystyrene foam boxes (12 tiers, 6 boxes/tier) of table grapes (Vitis vinifera) and fumigated with 1.0 and 0.5 lb (0.454 and 0.227 kg) SO2, respectively. A third marine container was loaded with 20 metric pallets comprised of 84 plastic boxes of table grapes (14 tiers, 6 boxes/tier) and fumigated with 0.25 lb (0.113 kg) SO2. The boxes contained 16 lb (7.3 kg) of table grapes distributed in nine polyethylene cluster bags.

We thank the California Table Grape Commission for financial support and Gerawan Farming (Redley, Calif.) for providing the fruit and the export containers and allowing us to use their facilities.

1Postharvest physiologist; corresponding author, e-mail: carlos@uckac.edu.

2Postharvest pathologist.

3Staff research associate.

4Warehouse manager, Gerawan Farming Inc., P.O. Box 1249, Reedley, Calif.
enclosed in a perforated polyethylene box liner. Fumigations were performed through the bottom seal of the rear door from pre-weighed compressed SO2 cylinders. CT product was calculated after taking samples of the atmosphere in the container every 5 to 10 min and measuring the ambient SO2 concentration with a gas sampling pump and colorimetric dosimeters. Pallet and box penetration of the gas was assessed by placing passive colorimetric SO2 dosimeters inside the cluster bags in boxes located in both the third and ninth center boxes from the top of pallets located in the front, center, and rear of the load. Fumigations with 1.0, 0.5, and 0.25 lb SO2, with calculated CT products at 32 °F of 925, 360, and 40 ppm-h (µL·L⁻¹·h⁻¹) respectively, were found to provide excessive, adequate, and insufficient SO2 doses.

Export markets for California table grapes are often located at least 10 d away by overseas transport and most of the produce is shipped in refrigerated marine containers. Shipments in 1999 totaled 84.1 million 21-lb (9.53-kg) carton-equivalent units (Cook, 2000). Gray mold, caused by Botrytis cinerea, is one of the most significant problems limiting quality of shipped produce (Capellini et al., 1986; Nelson, 1991). Control of gray mold during cold storage of table grapes is achieved by fumigations with sulfur dioxide (SO2), a practice that has been used in California for more than 70 years (Nelson, 1985). An initial sulfur dioxide treatment can kill fungal inoculum present on the fruit surface, but subsequent periodic fumigations are needed to prevent gray mold nesting caused by mycelial spread from infected berries to adjacent healthy berries (Nelson, 1985).

Usual handling of table grapes for shipment is as follows: fruit are selected, classified into quality categories, packed in boxes, and palletized in the field, then transported to the packinghouse, precooled as soon as possible, treated with gaseous SO2, and held at about 32 °F and high relative humidity (RH) until the container is loaded. Pallets are normally refumigated weekly during the cold storage period. It has been recommended to perform, when possible, precooling and initial SO2 fumigation simultaneously in a forced-air precooling room under the total utilization system. This method uses about 75% less SO2 than traditional initial fumigations (Luvisi et al., 1992). In most cases, loaded containers are gassed again at the loading point (shipping) in a last effort to assure a good arrival. In other cases, grapes may be packed with a two-phase in-package SO2 generating pad and shipped without an initial fumigation. However, recent studies (Crisosto et al., 1994, 2000) showed that in California this procedure is not as effective in controlling decay as the application of an initial fumigation to fruit packed with a vented plastic box liner and a slow-release generator.

The action of SO2 during fumigation is described in terms of the toxic concentration and the amount of time that the gas remains in contact with the target organism. These factors are multiplied and the gas doses are expressed by the CT product (concentration × time, typically measured in ppm-h) (Luvisi et al., 1992; Smilanick and Henson, 1992).

Sulfite residues and phytotoxicity (bleaching of fruit color and hairline splits) are the main problems associated with sulfur dioxide fumigations. In 1986, a residue tolerance of 10 ppm (µg·g⁻¹) sulfite on table grapes was established by the US Environmental Protection Agency (EPA) (EPA, 1986). Bleaching occurs when the gas is released at excessive concentrations and penetrates into the stem end or through lenticels or skin wounds, causing bleached or sunken areas (Ryall and Harvey, 1959). Hairline splits on the berry surface appear to be related to excessive sulfur dioxide dosages. Symptoms are microscopic longitudinal splits often followed by exudation of pulp juice (Santiago and Hanke, 2000; Zoelfli et al., 2000a).

Cylinders of compressed SO2 (pressurized liquid gas) are used in California for storage and container fumigation. The rates for SO2 use in containers in commercial use today were adapted from those originally developed for railcars (Jacob, 1929). These very high rates were developed to overcome densely packed wood boxes, and poor ventilation. For example, Uota and Harvey (1964) stated that 3 to 5 lb (1.36 to 2.27 kg) of SO2 were commonly used commercially to fumigate railcars of 2,360 ft³ (66.83 m³) capacity typically containing about 1000 boxes of 20 to 24 lb (9.07 to 18.14 kg) each. They found that even at these high fumigation rates, high rates of air movement and ventilation channels were needed among the boxes. No similar research characterizing SO2 distribution, residues, or bleaching injury with modern refrigerated containers has been done. We believe that a correct balance between decay control, SO2 residues and fruit injury could be maintained with the application of lower SO2 doses whenever the gas is uniformly distributed within the container. Our objective was to measure actual CT and SO2 distribution following marine container fumigations with low amounts of SO2.

Materials and methods

Three trials with commercial marine containers were conducted during the 1999 and 2000 table grape seasons in the San Joaquin Valley (California). In every case, loading and fumigation techniques followed common export commercial procedures in use today in California. In the first trial, a 2,377 ft³ (66.14 m³) refrigerated export container (Maersk Container Industri AS, Tinglev, Denmark) was loaded with 20 metric pallets comprised of 72 expanded polystyrene foam boxes of table grapes (12 tiers, 6 boxes/tier) and fumigated with 1 lb SO2. In the second trial, a 2,366 ft³ container (65.84 m³, Maersk Container Industri AS, Tinglev, Denmark) was loaded with 20 metric pallets comprised of 72 expanded polystyrene foam boxes (12 tiers, 6 boxes/tier) and fumigated with 0.5 lb SO2. And in the third trial, a 2,352 ft³ container (65.45 m³, Maersk Container Industri AS) was loaded with 20 metric pallets comprised of 84 plastic boxes (14 tiers, 6 boxes/tier) and fumigated with 0.25 lb SO2. The following methodology was common to all three trials.

Container loading. The metric pallets were pinwheeled into the container in the packinghouse cold storage facilities. An additional tier of boxes was added to the top of the pallets to bring the load to within 6 inches (15.4 cm) of the limit line. The packages were commercial 16-lb (7.3 kg) boxes containing nine polyethylene cluster bags of ‘Red Globe’, ‘Ruby Seedless’ and/or ‘Red Seedless’ table grapes with a slow-release SO2 pad, all enclosed in a microperforated polyethylene box liner (1.2% vented area). The pinwheeled loading pattern left no more than 1 inch (2.6 cm) of clearance between pallets or between the pallets and sidewalls. There were about 10 inches (25.6 cm) of uncovered floor at the rear of the container. The container drain holes and air...
The amounts of SO₂ surrounding the grapes were measured by placing passive colorimetric dosimeter tubes (Gastec-Sensidyne Nos. 5D and 5DH; Gastec Corp.) within the cluster bags that contained the fruit in boxes placed in the front (second row from bulkhead), center (fourth row from bulkhead), and rear (eighth row from bulkhead, third from rear doors) of the load. Two different passive tubes were used in each sampled bag. One 5D tube (detection limits of 0 to 100 ppm-h) and one 5DH tube (detection limits of 10 to 600 ppm-h) were placed in both the third and ninth center box from the top of each pallet (including the additional top box). Passive dosimeters were placed in center boxes as recommended for in-box CT determination by Luvisi et al. (1992). After venting, the container was unloaded and the passive dosimeters recovered. The container was then loaded again and shipped to destination.

Results

1-lb SO₂ Fumigation. The concentration of SO₂ measured in the container was 1,500 ppm 5 min after gas introduction. This concentration decreased to 250 ppm after 90 min (Fig. 1). Based on the measurements performed 5, 15, 20, 30, 40, 50, 70, and 90 min after the injection of the gas (Fig. 1), the calculated container’s CT from the 1-lb fumigation in the 2,377-ft³ container was 925 ppm-h.

After 95 min of exposure, the container was vented, unloaded and the passive dosimeters checked. At all of the sampling positions the 5D tubes (detection limits of 0 to 100 ppm-h) were completely saturated. With the exception of the rear top and rear bottom pallet positions, the 5DH tubes measured from 400 to 250 ppm-h depending upon pallet and box position. The rear pallet position, bottom box recorded the lowest dose at 250 ppm-h (Table 1).

0.25-lb SO₂ Fumigation. The concentration of SO₂ measured in the container was 100 ppm 5 min after gas introduction. This concentration decreased to 5 ppm after 70 min (Fig. 1). Based on the measurements performed 5, 8, 15, 20, 38, 47, 60, and 70 min after the injection of the gas (Fig. 1), the calculated container’s CT from the 0.25-lb fumigation in the 2,352-ft³ container was about 40 ppm-h.

After 70 min of exposure, the container was vented, unloaded and the passive dosimeters checked. At all of the sampling positions the 5D tubes measured from 40 to 7 ppm-h depending upon pallet and box position. The top boxes at the center and rear pallet positions recorded the lowest doses at 7 ppm-h (Table 1).

Fig. 1. Sulfur dioxide (SO₂) concentrations [ppm (µL·L⁻¹)] measured in air samples from a marine container loaded with table grapes withdrawn during fumigation with 1.0, 0.5, or 0.25 lb (0.454, 0.227, or 0.113 kg) of gas. Air samples were taken from the bottom rear pallet position.
Table 1. Sulfur dioxide (SO₂) doses (concentration \times time) in expanded polystyrene foam or plastic boxes containing fruit in cluster bags enclosed in perforated box liners that had been palletized and loaded into a marine container and fumigated with 1.0, 0.5, or 0.25 lb (0.454, 0.227, or 0.113 kg) of gas.

<table>
<thead>
<tr>
<th>Pallet position</th>
<th>Box position</th>
<th>SO₂ dose [ppm-h (µL-L⁻¹-h⁻¹)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.0 lb SO₂,⁴ 0.5 lb SO₂,⁴ 0.25 lb SO₂,⁴</td>
</tr>
<tr>
<td>Rear</td>
<td>Top</td>
<td>400</td>
</tr>
<tr>
<td>Rear</td>
<td>Bottom</td>
<td>350</td>
</tr>
<tr>
<td>Center</td>
<td>Top</td>
<td>>600</td>
</tr>
<tr>
<td>Center</td>
<td>Bottom</td>
<td>>600</td>
</tr>
<tr>
<td>Front</td>
<td>Top</td>
<td>>600</td>
</tr>
<tr>
<td>Front</td>
<td>Bottom</td>
<td>>600</td>
</tr>
</tbody>
</table>

⁴Expanded polystyrene foam boxes; SO₂ measured using Gastec-Sensidyne SDH passive dosimeter tubes (Gastec Corp., Fukaya, Ayase-City, Japan).

⁵Plastic boxes; SO₂ measured using Gastec-Sensidyne 5D passive dosimeter tubes.

Discussion

The purpose of the SO₂ container fumigation of table grapes is to maximize decay control while minimizing losses due to SO₂ damage in order to adequately preserve the fruit during shipping and offer high quality produce in the arrival markets. At 32 °F, a CT product of at least 100 ppm-h in the air spaces surrounding the berries kills both the spores and the mycelia of B. cinerea (Smilanick and Henson, 1992; Luvisi et al., 1992). This CT dose can be obtained with an average concentration of 100 ppm for 1 h, 200 ppm for 0.5 h, or 25 ppm for 4 h, or an equivalent combination of concentration and time. However, gaseous SO₂ should be applied at higher doses to ensure that at least such a minimum effective dose reaches the atmosphere surrounding the grapes. Sorption of the gas by fruit and packaging materials and resistance of the load to gas penetration force the use of higher SO₂ doses. Gas dose, however, has to be low enough to cause minimal phytophagy and to keep sulfite residues under regulatory tolerances. These problems have led investigators to search for fumigation technologies that can effectively use reduced levels of SO₂ (Luvisi et al., 1992; Marois et al., 1986). Alternatives to the use of SO₂ such as chlorine dioxide, carbonates, ethanol or ozone are also being evaluated (Crisosto and Smilanick, 2000; Palou et al., 2001).

Multiple factors influence the distribution and penetration of SO₂ during fumigation. The type of container, number and position of fans, and location of channels where the air is allowed to circulate influence how the gas is distributed in and around the load (Luvisi et al., 1995; Uota and Harvey, 1964). An additional amount of fumigant would be required when there is water condensation in the container because considerable proportions of the gas are readily absorbed by free water (Uota and Harvey, 1964). We did not observe water condensation in these trials. Concentration of SO₂ also depends on the position of the pallet in the container and on the position of the box in the pallet. In our trials, penetration at the rear bottom position was in general lower than at the center or the front. This may be due to leaving the small portion of floor near the rear doors uncovered. The packaging materials also have a great influence on SO₂ penetration. Luvisi et al. (1992) observed that SO₂ penetration was higher in foam boxes than in wood-end [Technical Kraft Veneer (TKV)] and corrugated boxes, and higher in wood-end than in corrugated boxes. In their experiments, gas penetration in boxes with fruit in plastic cluster bags (without box liners) was not retarded when compared to gas penetration in boxes with plain-packed grapes. In laboratory experiments, grapes packaged in expanded polystyrene foam boxes sorbed ca. 50% less SO₂ as did those in wood-end boxes; grapes in fiberboard boxes sorbed ca. 50% more SO₂ than did those in wood-end boxes (Harvey et al., 1988). We used polystyrene and plastic boxes, which are materials that sorb little SO₂ (Harvey et al., 1988).

For that reason, we assume that CT and SO₂ distribution with either material would not differ substantially.

Our results showed that the 1-lb SO₂ container fumigation, with a calculated CT of 925 ppm-h and a dose higher than 600 ppm-h in most of the box positions, under the experimental conditions, was an excessive dose for the purposes of the treatment. This rate may induce berry bleaching and rachis pitting in susceptible cultivars. A level of sulfate residues higher than the tolerance of 10 ppm may also be of concern. Therefore, worse consequences on fruit quality should be expected from container fumigations of 8 to 5 lb, and even worse when the produce have already received an initial fumigation and multiple SO₂ gassings during the cold storage period prior to this container fumigation. Furthermore, because the grapes were packed with plastic bags and box plastic liners and these materials certainly reduced the amount of gas that contacted the fruit, the negative effects of the treatment at these rates would be even greater on plain-packed grapes. In contrast, the 0.25 lb SO₂ fumigation did not generate a sufficient dose (40 ppm-h) in the well-vented plastic boxes tested. This dose is lower than the minimum acceptable level of 100 ppm-h necessary to effectively control gray mold (Smilanick and Henson, 1992) and thus cannot be recommended. A dose of about 360 ppm-h was obtained after fumigating a container of foam boxes with 0.5 lb of SO₂. Under the conditions of our trial, this dose could be appropriate to maintain a balance between decay control and SO₂ damage and residues.

Literature cited

Legume and Grass Cover Crops for Seedless Watermelon Production

M. Rangappa,1 A.A. Hamama, and H.L. Bhardwaj

ADDITIONAL INDEX WORDS. crimson clover, hairy vetch, ryecel, Vicia villosa, nitrogen fertilizer

SUMMARY. Although there is increasing interest in reducing the use of nitrogen (N) fertilizers due to the potential of unused N causing pollution of surface and groundwater, N is a major nutrient for plant growth. Our objective was to determine the potential of using winter legume cover crops to meet the N needs of seedless watermelon (Citrullus lanatus), a potential cash crop for farmers in Virginia. Fruit number, fruit weight, fruit yield, and fruit quality traits (flesh to rind ratio, water content, total soluble solids, sugar content, and pH) of seedless watermelons were evaluated in replicated experiments in Virginia at three locations during 1997–98 and two locations during 1998–99 following cover crop treatments consisting of crimson clover (Trifolium incarnatum), hairy vetch (Vicia villosa), crimson clover + ryecel, hairy vetch + rye, and a bare-ground control treatment that received 100 lb/acre (112 kg·ha⁻¹) of N. At all five locations, the bare-ground control treatment resulted in fewer fruit [1803 fruit/acre (4454 fruit/ha)], lower fruit weight [9.8 lb (4.5 kg)], and lower fruit yield [8.9 tons/acre (20.0 t·ha⁻¹)] compared to the four cover crop treatments. The crimson clover + rye and hairy vetch treatments resulted in highest number