Fruit ripening
Color change and Conditioning

Kentaro Inoue
University of California, Davis
kinoue@ucdavis.edu
June 15th, 2010

Fruit ripening
Color change and Conditioning

1. Fruit development
 - Definition of maturation and ripening

2. Importance of color

3. Conditioning for ripening
 - Some climacteric fruits as examples
Stages of fruit development

Maturation
The stage of development leading to the attainment of physiological or horticultural maturity

• **Physiological maturity:**
 – The stage of development when a plant or plant part will **continue ontogeny even if detached**

• **Horticultural maturity:**
 – The stage of development when a plant or plant part possesses the **prerequisites for utilization by consumers for a particular purpose**
Ripening:
The composite of the processes:
- Occurring from the **latter stages of growth and development** through the **early stages of senescence**
- Resulting in **characteristic aesthetic and/or food quality**, as evidenced by **changes in composition, color, texture, or other sensory attributes**
Maturity and ripeness stages of cherry tomatoes

Optimal harvest stages

1. Fruit development

- For us...
 - Cosmetic value
 - Indicator of ripening
 - Nutritional value = Antioxidant

- Green - light capture (photosynthesis)
- **Red/orange etc** - Attract seed dispersers
- Protect tissues from oxidative stress

Importance of “Color”
Anthocyanins
Antioxidants

Carotenoids
Antioxidants
Provitamin A

2. Importance of color

Anthocyanins
Carotenoids

Phenylpropanoids
Isoprenoids (terpenoids)

Cf. Dr. Zakharov’s lecture
2. Importance of color

- **chromoplast**
- **“crystaline structure”**
- **lycopene**
- **Electron microgram**
- **cis-β-carotene**
- **“globules”**
- **Esters of cis-violaxanthin**

2. Importance of color

- **“Photosynthetic” carotenoids**
- **chlorophylls**
- **chloroplast**
- **“Non-photosynthetic” carotenoids**
- **Color Break**

Images and diagrams illustrate the different types of pigments and their structural representations.
Group 1: Nonclimacteric fruits:
Fruits that are not capable of continuing their ripening process once removed from the plant

<table>
<thead>
<tr>
<th>Blackberry</th>
<th>Loquat</th>
<th>Pomegranate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cherry</td>
<td>Lychee</td>
<td>Prickly pear</td>
</tr>
<tr>
<td>Grape</td>
<td>Mandarin</td>
<td>Rambutan</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>Muskmelon*</td>
<td>Raspberry</td>
</tr>
<tr>
<td>Lemon</td>
<td>Orange</td>
<td>Strawberry</td>
</tr>
<tr>
<td>Lime</td>
<td>Pepper (bell)</td>
<td>Tamarillo</td>
</tr>
<tr>
<td>Longan</td>
<td>Pineapple</td>
<td>Watermelon</td>
</tr>
</tbody>
</table>

*Some muskmelon varieties are climacteric, but are best when harvested partially- or fully-ripe.
Maturity and ripeness stages of **cherries**

Maturity and ripeness stages of **strawberries**

Strawberries must be picked fully-ripe

b/c they do not continue to ripen (improve in flavor) after harvest
Group 2: Climacteric Fruits:
Fruits that can be harvested at physiological maturity and ripened off the plant

<table>
<thead>
<tr>
<th>Apple</th>
<th>Mango</th>
<th>Persimmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apricot</td>
<td>Nectarine</td>
<td>Plum</td>
</tr>
<tr>
<td>Avocado</td>
<td>Papaya</td>
<td>Quince</td>
</tr>
<tr>
<td>Banana</td>
<td>Passion fruit</td>
<td>Sapodilla</td>
</tr>
<tr>
<td>Cherimoya</td>
<td>Peach</td>
<td>Sapote</td>
</tr>
<tr>
<td>Guava</td>
<td>Pear</td>
<td>Tomato</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>Pepper (chili)</td>
<td></td>
</tr>
</tbody>
</table>

Except avocado, banana, and pear, these fruits attain best flavor if ripened on the plant.

Maturity and ripeness stages of apricots
Optimal conditions for ripening of climacteric fruits

Ripening rooms
- Temperature: 15 to 25°C (59 to 77°F)
- Relative humidity: 85-95%
- Air circulation (more uniform temperature and ethylene concentration)
- Ventilation (introduction of fresh air to keep carbon dioxide below 1%)

Treatment with ethylene
- 100 ppm ethylene in air for 1-3 days, depending on maturity stage at harvest

Temperature and relative humidity management is the most important factor affecting ripening rate & uniformity
Ripening rooms

Forced-air (pressure) ripening room

Ethylene generator

3. Conditioning for ripening

Ripening conditions for some commonly-ripened fruit

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Exposure time (hours)(^1) to 100ppm ethylene</th>
<th>Range of ripening temperatures(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avocado</td>
<td>8-48</td>
<td>15-20°C / 59-68°F</td>
</tr>
<tr>
<td>Banana</td>
<td>24-48</td>
<td>14-18°C / 58-65°F</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>12-24</td>
<td>12-25°C / 54-77°F</td>
</tr>
<tr>
<td>Mango</td>
<td>24-48</td>
<td>20-25°C / 68-77°F</td>
</tr>
<tr>
<td>Pear</td>
<td>24-48</td>
<td>20-25°C / 68-77°F</td>
</tr>
<tr>
<td>Tomato</td>
<td>24-72</td>
<td>18-20°C / 65-68°F</td>
</tr>
</tbody>
</table>

\(^1\) Shorter duration for more mature fruit
\(^2\) Faster ripening rate at higher temperatures
Current recommendations for avocado ripening

Temperature: 15.5-20°C (60-68°F)
Relative humidity: 90-95%
Ethylene concentration: 10-100ppm
Duration: 8-48 hr, depending on maturity stage
Carbon dioxide level: Adequate air flow to keep CO₂ below 1%

Effect of harvest date (maturity) on the time to ripen for ‘Hass’ avocado

<table>
<thead>
<tr>
<th>Harvest date</th>
<th>Control</th>
<th>Treated*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 8</td>
<td>13.9</td>
<td>10.8</td>
</tr>
<tr>
<td>Feb. 6</td>
<td>12.8</td>
<td>8.8</td>
</tr>
<tr>
<td>April 10</td>
<td>10.1</td>
<td>7.1</td>
</tr>
<tr>
<td>June 5</td>
<td>8.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

* Fruit treated with 1000ppm propylene, an ethylene analogue
Ethylene (C_2H_4) is required to induce banana ripening

![CONTROL vs C$_2$H$_4$ TREATED](image)

After 7 days at 20°C

Ethylene (C_2H_4) induces ripening of various banana and plantain cultivars

- Plantain
- Burro
- Red
- Manzano
- Petite

100ppm C_2H_4 for 2 days
Air for 3 days at 20°C (68°F)

Air for 5 days at 20°C (68°F)
Ripening conditions for **banana**

- **Fruit temperature:** 14-18°C (58-65°F)
- **Relative humidity:** 90-95%
- **Ethylene concentration:** 100 ppm
- **Duration of exposure to ethylene:** 24-48 hours, depending on maturity stage
- **Carbon dioxide:** Adequate air exchange to prevent accumulation of CO₂ above 1%

Effect of temperature during ripening on banana quality attributes

![Graph showing the effect of temperature on banana quality attributes](image)
Note the 5-fold increase in respiration rate (carbon dioxide production) as banana ripens from stage 2 to stage 4.
Carbon dioxide reduces efficacy of ethylene in inducing banana fruit ripening

Low relative humidity (RH) accelerates water loss and appearance of physical damage symptoms on banana
Mango maturity indices

- *Fruit shape (fullness of the shoulders)*
- *Skin ground color change from dark-green to light-green to yellow (depending on cultivar)*
- *Flesh color change from green to yellow to orange*
- *Increase in total solids (dry weight)*
- *Increase in soluble solids (mainly sugars) and decrease in acidity*

Mango maturity and ripeness stages

* Minimum stage for harvest
Ripening conditions for mango

Fruit temperature: 20 to 22°C (68-72°F)
Relative humidity: 90-95%
Ethylene concentration: 100 ppm
Duration of exposure to ethylene: 24-48 hours, depending on maturity stage (flesh firmness)
Carbon dioxide: <1%

Mango ripeness vs. flesh firmness

<table>
<thead>
<tr>
<th>Ripeness stage</th>
<th>Flesh firmness (lb-force with 8mm-tip penetrometer)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature-green</td>
<td>>14</td>
<td>Treat with ethylene for 48 hours</td>
</tr>
<tr>
<td>Partially-ripe</td>
<td>10-14</td>
<td>Treat with ethylene for 24 hours</td>
</tr>
<tr>
<td>Firm-ripe</td>
<td>6-10</td>
<td>Best stage to send to retail stores</td>
</tr>
<tr>
<td>Soft-ripe</td>
<td>2-6</td>
<td>Best stage for eating</td>
</tr>
<tr>
<td>Over-ripe</td>
<td><2</td>
<td>Good for juice</td>
</tr>
</tbody>
</table>
Maturity and ripeness stages of Nectarine

1. Immature
2. Mature-green
3. Partially-ripe
4. Ripe

Ethylene effects on stone fruit ripening at 20°C (68°F) as indicated by flesh firmness (means + standard deviation)

<table>
<thead>
<tr>
<th>Days</th>
<th>Treatment</th>
<th>Flesh Firmness (pounds-force)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nectarine</td>
</tr>
<tr>
<td>0</td>
<td>At harvest</td>
<td>11.6±2.1</td>
</tr>
<tr>
<td>4</td>
<td>W/O added ethylene</td>
<td>2.3±1.0</td>
</tr>
<tr>
<td>4</td>
<td>With 20ppm ethylene</td>
<td>1.8±0.4</td>
</tr>
</tbody>
</table>
Delayed cooling = conditioning = ripening of peaches to reduce internal breakdown

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C 20 Days</td>
<td>(43% Mealy)</td>
</tr>
<tr>
<td>20°C 48 Hours + 5°C 20 Days</td>
<td>(100% Mealy)</td>
</tr>
<tr>
<td>5°C 20 Days</td>
<td>(0% Mealy)</td>
</tr>
</tbody>
</table>

From: Carlos Crisosto

Smartfresh™ Technology

On July 17, 2002, USEPA approved registration of Smartfresh™ technology and established an exemption from tolerance for its active ingredient: 1-methylcyclopropene (1-MCP) for the following fruits: apple, apricot, avocado, kiwifruit, mango, melon, nectarine, papaya, peach, pear, persimmon, plum, tomato.

Approval in other countries and for more commodities has occurred since 2002.

Responses of 1-MCP-treated fruits to ethylene depends on 1-MCP concentration used (100 to 1000 ppb) and elapsed time since the treatment.