Fruit Ripening and Quality Relationships

Florence Zakharov
Department of Plant Sciences
fnegre@ucdavis.edu

Stages of Fruit Development

INITIATION DEVELOPMENT DEATH

GROWTH

MATURATION

PHYSIOLOGICAL MATURETY

RIpening

SENSIENCE

John O'Neill

Development

- The series of processes from the initiation of growth to death of a plant or plant part.

Growth

- The irreversible increase in physical attributes (characteristics) of a developing plant or plant part.

Maturation

- The stage of development leading to the attainment of physiological or horticultural maturity

Physiological maturity

- The stage when a plant or plant part will continue developing even if detached

Horticultural maturity

- The stage of development when a plant or plant part possesses the prerequisites for utilization by consumers

Ripening

- The set of processes that occur from the later stages of growth through the early stages of senescence and that results in characteristic aesthetic and/or eating quality, as evidenced by changes in composition, color, texture, or other sensory attributes.
Compositional Changes During Pineapple Development

Stages of Fruit Development

Senescence
- The last stage of development during which degradation of biological components occur.

Physiological Changes Accompanying Senescence of Horticultural Crops

Cellular:
- Loss of chlorophyll, disassembly of chloroplast structure
- Degradation of cell walls
- Altered membrane composition, loss of fluidity
- Loss of cellular compartmentalization, release of vacuolar contents

Senescence
- The last stage of development during which degradation of biological components occur.

Physiological Changes Accompanying Senescence of Horticultural Crops (cont.)

Composition:
- Altered sugar content, and switch to alternative substrates for respiration
- Net loss of RNA
- Increased protease activity, net loss of protein
- Altered amino acid content

Stages of Fruit Development

Physical Changes Accompanying Senescence of Horticultural Crops

Color:
- Loss of green color
- Synthesis of new pigments (carotenoids, flavonoids)

Texture:
- Softening
- Wilting
- Drying

Loss of resistance to pathogens:
- Development of infections
- Lesions

Respiration and ethylene production rates of climacteric and non-climacteric fruits

- Climacteric Fruits: Ethylene
- Non-Climacteric Fruits: Respiration

Time after Harvest
Maturity and Ripening

Group 1:
Fruits that are **not** capable of continuing their ripening process once removed from the plant.

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Minimum maturity indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackberry</td>
<td>Pomegranate</td>
</tr>
<tr>
<td>Cherry</td>
<td>Lychee</td>
</tr>
<tr>
<td>Grape</td>
<td>Mandarin</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>Muskmelons</td>
</tr>
<tr>
<td>Lemon</td>
<td>Raspberry</td>
</tr>
<tr>
<td>Lime</td>
<td>Pepper (bell)</td>
</tr>
<tr>
<td>Longan</td>
<td>Pineapple</td>
</tr>
<tr>
<td>Pomegranate</td>
<td>Red juice color and below 1.85% acid in juice</td>
</tr>
<tr>
<td>Prickly pear</td>
<td>Rambutan</td>
</tr>
<tr>
<td>Rambutan</td>
<td>Pomegranate</td>
</tr>
<tr>
<td>Raspberry</td>
<td>Rambutan</td>
</tr>
<tr>
<td>Rambutan</td>
<td>Pomegranate</td>
</tr>
<tr>
<td>Prickly pear</td>
<td>Rambutan</td>
</tr>
<tr>
<td>Watermelon</td>
<td>Pineapple</td>
</tr>
</tbody>
</table>

California Minimum Maturity Indices for Selected Non-Climacteric Fruits

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Minimum maturity indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Starch pattern, above 10.5 to 12.5% SS and below 18 to 23 lb-force firmness (depending on cultivar)</td>
</tr>
<tr>
<td>Apricot</td>
<td>Nectarine</td>
</tr>
<tr>
<td>Avocado</td>
<td>Papaya</td>
</tr>
<tr>
<td>Banana</td>
<td>Passion fruit</td>
</tr>
<tr>
<td>Cherimoya</td>
<td>Peach</td>
</tr>
<tr>
<td>Guava</td>
<td>Pear</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>Pepper (chili)</td>
</tr>
<tr>
<td>Mango</td>
<td>Persimmon</td>
</tr>
<tr>
<td>Persimmon</td>
<td>Yellowish-green color, and/or below 23 lb-force firmness, and/or above 13% SS (depending on cultivar)</td>
</tr>
<tr>
<td>Plum</td>
<td>Yellowish-green color, and/or below 23 lb-force firmness, and/or above 13% SS (depending on cultivar)</td>
</tr>
<tr>
<td>Quince</td>
<td>Yellowish-green color, and/or below 23 lb-force firmness, and/or above 13% SS (depending on cultivar)</td>
</tr>
<tr>
<td>Sapodilla</td>
<td>Yellowish-green color, and/or below 23 lb-force firmness, and/or above 13% SS (depending on cultivar)</td>
</tr>
</tbody>
</table>

Maturity and Ripeness Stages of Strawberries

Strawberries must be picked fully-ripe because they do not continue to ripen after harvest.

California Minimum Maturity Indices for Pome Fruits

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Minimum maturity indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Starch pattern, above 10.5 to 12.5% SS and below 23 lb-force firmness (depending on cultivar)</td>
</tr>
<tr>
<td>Persimmon</td>
<td>Yellowish-green to orange color (depending on cultivar)</td>
</tr>
</tbody>
</table>

Quality Attributes of Fruits

- Vary depending on protagonist in PH chain
- Consumer-centric “quality” ultimately drives marketability and sales
- Overall consumer acceptance strongly correlated with “Flavor acceptance”
Perception of Quality

• Our sensory systems are responsible for generating an internal representation of the outside world, including its chemical (taste and olfaction) and physical (mechanical, sound, vision and temperature) features.
• When evaluating the quality of the foods we eat, we use the complete array of our sensory system (chemical and physical senses) and integrate this information to formulate a judgment.

Sensory Attributes of Foods

Appearance
• First attributes perceived
• Shape
• Color
 o Strongly-set expectations
 o Emotional connotations

Taste
• Our sense of taste is in charge of evaluating the nutritious content of food and preventing the ingestion of toxic substances.
• Taste is a sensation perceived in the mouth, more specifically on the tongue. We have innate likes and dislikes for it.
 • Sweet
 • Salty
 • Bitter
 • Sour (acidic)
 • Umami (protein – savory)

A rapid method for measuring sugar content in a liquid

• A refractometer measures the refraction of light as it passes through a drop of liquid (it measures the “refractive index” of that liquid).
• The refractive index is directly proportional to the concentration of ALL diluted solutes in the liquid.
• The correct term for fruit juice is:
 TOTAL Soluble Solids (TSS or SSC) = sugars, organic acids, amino acids, soluble pectins, anthocyanins, other phenolic compounds...
Acids	Sugars
Low | Insipid, tasteless | Sweet
Moderate to High | Sour, tart | Best taste combination

Sensory Attributes of Foods

Aroma

Aroma (or smell or odor) is the sensation perceived when volatile compounds are drawn into the nose.

We have learned likes and dislikes for it.

The Aroma of a Strawberry

Over 200 volatile compounds !!

Chemical Irritation

- Common chemical sense
- Stimulated by chemical irritants
 - Ex: capsaicin, piperin, allicin, glucosinolates, etc...

Innate dislikes (protection)

Texture / Mouthfeel

- Astringency (tannins, calcium oxalate)
- Sense of touch (mechanoreceptors)

Sensory Attributes and Fruit Composition

- All fruit components (sugars, acids, volatiles, etc...) combine to generate a unique sensory experience for the consumer.

- Physical methods can give accurate measurements of fruit composition but it is difficult to relate these measurements to fruit quality without information about sensory perception.
Sensory Methodology

- **Analytical tests**
 - Difference? What is it? How strong is it?
 - Descriptive analysis
 - Trained judges

- **Consumer tests**
 - Preference, liking, purchase intent
 - Attitudes, beliefs
 - Ethnography
 - Untrained consumers

Objective measurements and Quality prediction

- Development on the plant
 - Developmental program
 - Physiological processes (metabolism)
 - Changes in composition
 - Genetic/environmental/cultivation factors

- Postharvest Life (?)
 - Altered physiological processes (metabolism)
 - Changes in composition
 - Genetic/environmental/handling factors

→ Harvesting at maximum potential

→ Attaining and retaining maximum quality

Sensors for Nondestructive Testing of Produce Quality

- Acoustic impulse transmission
- Aroma sensing technology ("electronic noses")
- Chlorophyll fluorescence
- Electrical and mechanical impedance
- Fruit bounce firmness measurement
- Near infrared (NIR) transmittance
- Nuclear magnetic resonance (NMR) imaging
- X-ray imaging

Volatiles as Objective Markers for Flavor Quality

- Testing a rapid method for volatile analysis for use in commercial setting to monitor flavor quality (pre- and post-harvest)

 - zNose™
 - (Electronic Sensor Technology)

http://www.jove.com/video/3821/
Nondestructive Quality Sensing Needs

- Degree of freshness (time since harvest)
- Prior exposure to ethylene (concentration x duration x temperature)
- Prior exposure of chilling-sensitive commodities to chilling conditions (temperature x duration)
- Internal translucency / browning
- Mealiness (lack of juiciness)
- Acidity / nutritional value
- Aroma (volatiles)

Questions?